Simple Enzymatic Reaction:

$$S + E \leftrightarrow ES \rightarrow P + E$$

$$Reaction Rate = \frac{V_{max}[S]}{K_{m} + [S]}$$

How do we relate to biology?

Two Component Signaling

ATP + PK - His
$$\leftrightarrow$$
 ADP +PK - His \sim P
PK \sim P + RR - Asp \rightarrow PK+RR - Asp \sim P
H₂0 + RR - Asp \sim P \rightarrow RR - Asp + P

Examples of two-component systems in Bacteria

Chemotaxis Nitrogen Regulation Phosphate Regulation Osmoregulation **Sporulation** Competence Flagellar Biosynthesis Oxygen Regulation Salmonella Virulence Tricarboxylate Transport etc...

300+ Systems identified in 100+ organisms.

More than 30 known systems in *E. coli* and *B. subtilis*

Chemotaxis

R.M. Ford (UVA)

Tethering Analysis

Adaptation

E. coli Chemotaxis Pathway

E. coli Control Diagram

Kinetic Model

$$Tar_N + L \leftrightarrow Tar_N L$$

$$A + Tar_N \rightarrow Ap + Tar_N$$

$$A + Tar_N L \rightarrow Ap + Tar_N L$$

$$Ap + Y \rightarrow A + Yp$$

$$Ap + B \rightarrow A + Bp$$

$$R + Tar_{N} \rightarrow Tar_{N+1}$$
 $Bp + Tar_{N} \rightarrow Tar_{N-1} + Bp$
 $R + Tar_{N}L \rightarrow Tar_{N+1}L$
 $Bp + Tar_{N}L \rightarrow Tar_{N-1}L + Bp$
 $Yp + Z \rightarrow Z + Y$
 $Bp \rightarrow B$

Assumptions in Kinetic Models

- Homogeneous mixture (well mixed).
- Constant temperature and pressure.
- Single Phase.
- Intensive variables
 - average concentrations
 - statistical averages

Response of two different cells

Deterministic vs. Probabilistic

Reaction Rate = <u>Average number</u> of reaction A in an infinitely small time interaval.

What about molecular fluctuations?

Reaction Rate = <u>Relative likelihood</u> of reaction A in an infinitely small time interaval.

Effect of Population Size Coin Flipping Experiment

Dimerization Reaction $A \leftrightarrow B$

Fluctuations scale roughly as square root of the population size

$$std \propto \frac{1}{\sqrt{N}}$$

Cellular Environment

- -Low concentrations (nanomolar)
- -Single molecule events (DNA)

Gene Expression

How do we determine kinetics? Concentration measurements.

- Fluorescence
- Radioactivity
- Conductance
- Refraction
- ab initio
- etc....

Biacore

